วันอาทิตย์ที่ 11 กันยายน พ.ศ. 2554

พันธุวิศวกรรม (genetic engineering)

พันธุวิศวกรรม (genetic engineering) หรือความรู้ที่ได้จากการศึกษาชีววิทยาระดับโมเลกุล (molecular biology) จนทำให้สามารถประยุกต์ใช้ในการปรับเปลี่ยน เคลื่อนย้าย หรือตรวจสอบสารพันธุกรรม (ดีเอ็นเอ) และผลิตภัณฑ์ของสารพันธุกรรม (อาร์เอ็นเอและโปรตีน) ได้
การประยุกต์ใช้พันธุวิศวกรรมแบบหนึ่งที่รู้จักกันอย่างกว้างขวางได้แก่ การเคลื่อนย้ายยีน (transgenesis)จากสิ่งมีชีวิตสปีชีส์หนึ่งไปสู่สิ่งมีชีวิตอื่นในสปีชีส์ เดียวกันหรือสปีชีส์อื่น ซึ่งทำให้เกิดการถ่ายทอดยีนและลักษณะที่ยีนนั้นควบคุมอยู่ ทำให้เกิดสิ่งมีชีวิตรูปแบบใหม่ (novel)ซึ่งอาจไม่เคยปรากฏในธรรมชาติมาก่อน ตัวอย่างเช่น การใส่ยีนสร้างฮอร์โมนอินซูลินเข้าไปในแบคทเรียหรือยีสต์ เพื่อให้ผลิตสารดังกล่าว ซึ่งสามารถนำมาสกัดบริสุทธิ์เพื่อใช้รักษาผู้ป่วยโรคเบาหวาน เป็นต้น
สิ่งมีชีวิตที่ได้จากกระบวนการเคลื่อนย้ายยีน เรียกว่า สิ่งมีชีวิตเคลื่อนย้ายยีน (transgenic organisms) ซึ่งอาจเป็นได้ตั้งแต่สิ่งมีชีวิตที่มีวิวัฒนาการต่ำอย่างจุลินทรีย์ ไปจนสิ่งมีชีวิตชั้นสูงอย่างพืชและสัตว์ชนิดต่างๆ
ในวงการสื่อ มักเรียกสิ่งมีชีวิตเคลื่อนย้ายยีน (transgenic organisms) ว่าเป็น สิ่งมีชีวิตดัดแปลงพันธุกรรม หรือ สิ่งมีชีวิตดัดแปรพันธุกรรม (genetically modified organims, GMOs)
ประโยชน์ของพันธุวิศวกรรม
          พันธุวิศวกรรมเป็นกระบวนการปรับปรุงพันธุ์สิ่งมีชีวิตชนิดพันธุ์ (species) หนึ่งโดยนำยีนจากอีกชนิดพันธุ์หนึ่งถ่ายฝากเข้าไป เพื่อจุดประสงค์ที่จะให้สามารถทำงานได้ดีขึ้น กระบวนการดังกล่าวมิได้เกิดขึ้นตามธรรมชาติ สิ่งมีชีวิตดังกล่าวมีชื่อเรียกว่า LMO (living modified organism) หรือ GMO (genetically modified organism) ตัวอย่างการวิจัยและพัฒนา รวมถึงการใช้ประโยชน์เชิงการค้ามีมากมาย ซึ่งจะกล่าวถึงเพียงบางอย่างเท่านั้น

ก. ด้านการเกษตรและอาหาร
          1. การปรับปรุงพันธุ์พืชให้ต้านทานโรคและแมลง วิธีการปรับปรุงพันธุ์แบบดั้งเดิม ซึ่งยังคงทำกันอยู่นั้น ใช้วิธีหาพันธุ์ต้านทานซึ่งส่วนใหญ่เป็นพันธุ์ป่าและมีลักษณะไม่ดีอยู่มาก จากนั้นเอาพันธุ์ต้านทานผสมพันธุ์พ่อ-แม่ เข้าด้วยกันรวมทั้งลักษณะต้านทานด้วยเหตุนี้ จึงต้องเสียเวลาคัดเลือก และพัฒนาพันธุ์ต่ออีกอย่างน้อย 8-10 ปี กว่าจะได้พันธุ์ต้านทานและมีลักษณะอื่น ๆ ดีด้วย ดังนั้นวิธีการปรับปรุงพันธุ์โดยการถ่ายฝากยีนที่ได้รับจากชนิดพันธุ์อื่น จึงสามารถลดระยะเวลาการพัฒนาพันธุ์ได้มาก
          1.1 พันธุ์พืชต้านทานแมลง มีสารสกัดชีวภาพจากแบคทีเรีย Bacillus thuringiensis หรือ บีที ที่ใช้กำจัดแมลงกลุ่มหนึ่งอย่างได้ผลโดยการฉีดพ่นคล้ายสารเคมีอื่น ๆ เพื่อลดการใช้สารเคมีด้วยความก้าวหน้าทางวิชาการทำให้สามารถแยกยีนบีที จากจุลินทรีย์นี้และถ่ายฝากให้พืชพันธุ์ต่าง ๆ เช่น ฝ้าย ข้าวโพด และมันฝรั่ง เป็นต้นให้ต้านทานแมลงกลุ่มนั้น และใช้อย่างได้ผลเป็นการค้าแล้วในประเทศ
          1.2 พันธุ์พืชต้านทานโรคไวรัส โรคไวรัสของพืชหลายชนิด เช่น โรคจุดวงแหวนในมะละกอ (papaya ring-spot virus) สามารถป้องกันกำจัดได้โดยวิธีนำยีนเปลือกโปรตีน (coat protein) ของไวรัสนั้นถ่ายฝากไปในพืช เหมือนเป็นการปลูกวัคซีนให้พืชนั่นเอง กระบวนการดังกล่าวใช้กันอย่างแพร่หลายในพืชต่าง ๆ

          2. การพัฒนาพันธุ์พืชให้มีคุณภาพผลผลิตดี ตัวอย่างได้แก่การถ่ายฝากยีนสุกงอมช้า (delayed ripening gene) ในมะเขือเทศ การสุกในผลไม้เกิดจากการผลิตสาร ethylene เพิ่มมากในระยะสุกแก่ นักวิชาการสามารถวิเคราะห์โครงสร้างยีนนี้ และมีวิธีการควบคุมการแสดงออกโดยวิธีการถ่ายฝากยีนได้ ทำให้ผลไม้สุกงอมช้า สามารถเก็บไว้ได้นาน ส่งไปจำหน่ายไกล ๆ ได้ สหรัฐเป็นประเทศแรกที่ผลิตมะเขือเทศสุกงอมช้าได้เป็นการค้า และวางตลาดให้ประชาชนรับประทานแล้ว

          3. การพัฒนาพันธุ์พืชให้ผลิตสารพิเศษ เช่นสารที่เป็นประโยชน์ต่าง ๆ ที่มีคุณค่าทางอาหารสูง อาจเป็นแหล่งผลิตไวตามิน ผลิตวัคซีน และผลิตสารที่นำไปสู่การผลิตทางอุตสาหกรรมต่าง ๆ เช่น พลาสติคย่อยสลายได้ และโพลิมเมอร์ ชนิดต่าง ๆ เป็นต้น

          4. การพัฒนาพันธุ์สัตว์ มีการพัฒนาพันธุ์โดยการถ่ายฝากยีน ทั้งในปศุสัตว์ และสัตว์น้ำ รวมทั้งน้ำปลา ได้มีตัวอย่างหลายรายการ เช่น การถ่ายฝากยีนเร่งการเจริญเติบโต และยีนต้านทานโรคต่าง ๆ เป็นต้น อย่างไรก็ตามประโยชน์ของพันธุวิศวกรรมในเรื่องการผลิตสัตว์นั้นเป็นเรื่อง ของการพัฒนาชุดตรวจระวังโรคเป็นส่วนใหญ่

          5. การพัฒนาสายพันธุ์จุลินทรีย์ ให้มีคุณลักษณะพิเศษบางอย่าง เช่นให้สามารถกำจัดคราบน้ำมันได้ดี เป็นต้น

ข. ด้านการแพทย์และสาธารณสุข
          เทคโนโลยีชีวภาพ โดยเฉพาะอย่างยิ่ง องค์ความรู้จากการวิจัยจีโนม ทำให้นักวิจัยรู้สึกถึงระดับยีนสิ่งมีชีวิต รู้ว่ายีนใดอยู่ที่ไหนบนโครโมโฃม หรือนอกโครโมโฃม สามารถสังเคราะห์ชิ้นส่วนนั้นได้ หรือตัดออกมาได้ แล้วนำไปใช้ประโยชน์ในเรื่องต่างๆ

          1. การตรวจโรค เมื่อสามารถสังเคราะห์ชิ้นส่วน ดีเอ็นเอ หรือยีนได้แล้ว ก็สามารถพัฒนาเป็น molecular probes สำหรับใช้ในการตรวจโรคต่างๆได้อย่างมีประสิทธิภาพ

          2. การพัฒนายารักษาโรคและวัคฃิน ยารักษาโรค และวัคฃิน ใหม่ๆ ผลิตโดยวิธีพันธุวิศวกรรมในจุลินทรี หรือ recombinant DNA ทั้งสิ้น

          3. การสับเปลี่ยนยีนด้อยด้วยยีนดี (gene therapy) ในอนาคต เมื่องานวิจัยจีโนมมนุษย์สำเร็จ ความหวังของคนที่ป่วยเป็นโรคทางพันธุกรรม อาจมีหนทางรักษาโดยวิธีปรับเปลี่ยนยีนได้

ค. ด้านการอนุรักษ์สิ่งแวดล้อม
          ความเจริญก้าวหน้าของเทคโนโลยีชีวภาพ นำไปสู่การพัฒนาที่ยั่งยืน และช่วยอนุรักษ์สิ่งแวดล้อมโดยเฉพาะอย่างยิ่ง พืชที่ได้รับการถ่ายฝากยีนต้านทานโรคและแมลง ทำให้ไม่ต้องใช้สารเคมีฉีดพ่นหรือใช้ในปริมาณที่ลดลงมาก พันธุวิศวกรรมอาจนำไปสู่การผลิตพืชที่ใช้ปุ๋ยน้อย และ น้ำน้อย ทำให้เป็นการลดการใช้ปุ๋ยเคมี เป็นการอนุรักษ์สิ่งแวดล้อม และนำไปสู่การสร้างสมดุลทรัพยากรชีวภาพได้

ง. ด้านการพัฒนาอุตสาหกรรม
          เมื่อวัตถุดิบได้รับการปรับเปลี่ยนคุณภาพให้ตรงกับความต้องการของอุตสาหกรรม โดยใช้พันวิศวกรรมแล้ว อุตสาหกรรมใหม่ๆจะเกิดตามมากมาย เช่น การเปลี่ยนโครงสร้างแป้ง น้ำมัน และโปรตีน ในพืช หรือการลดปริมาณเซลลูโลสในไม้ เป็นต้น ความก้าวหน้าทางเทคโนโลยีชีวภาพในอนาคต จะเป็นการเปลี่ยนรูปโแมอุตสาหกรรมใหม่ โดยเน้นการใช้วัตถุดิบจากสิ่งมีชีวิตมากขึ้น รถยนต์ทั้งคัน อาจทำจากแป้งข้าวโพด สารเคมีทั้งหมดอาจพัฒนาจากแป้ง เชื้อเพลิงอาจพัฒนาจากวัตถุดิบพืช เป็นต้น

ความเสี่ยง (risk) ของ LMOs หรือ GMOs
          พืช สัตว์ และจุลินทรีย์ที่ได้รับการตัดแต่งตัดต่อยีน หรือที่เรียกว่า LMOs นั้นอาจเรียกว่าเป็นสิ่งมีชีวิตแปลงพันธุ์ และอาจมีผลกระทบต่อสิ่งแวดล้อม คน และสัตว์ แตกต่างกันไปซึ่งขึ้นอยู่กับปัจจัยต่าง ๆ ดังนี้

          1. แหล่งยีน ถ้าเป็นยีนจากชนิดเดียวกัน เช่นยีนจากพืช ถ่ายให้พืช ย่อมมีปัญหาน้อยหรือไม่มีความเสี่ยงเลย ยีนจากสิ่งมีชีวิตอื่น ๆ ที่ทราบกันดีว่าไม่พิษมีภัยก็อาจจัดอยู่ในกลุ่มเสี่ยงน้อยด้วย ถ้าเป็นยีนจากจุลินทรีย์อาจก่อเกิดโรคได้ย่อมมีความเสี่ยงสูงขึ้น และยิ่งเป็นยีนที่ทราบแน่ชัดว่าสกัดมาจากเชื้อโรคยิ่งมีความเสี่ยงสูงมาก

          2. ส่วนประกอบของยีน ยีนที่ควบคุมลักษณะหนึ่งนั้นไม่สามารถแสดงออก หากปราศจากยีนช่วยแสดง (promoter) นอกจากนั้นยังต้องมียีนช่วยการเลือกคัด (selectable markers) อีกด้วย ยีนพวกนี้อาจเป็นยีนต้านทานยาปฏิชีวนะ หรือยีนต้านทานสารกำจัดวัชพืช ยีนเหล่านี้ต้องสร้างเป็นส่วนประกอบของดี เอ็น เอ สายเดียวกัน แล้วจึงถ่ายฝากให้พืชตัวรับ ปัญหาที่ตามมาคือ ยีนช่วยเลือกคัดอาจมีพิษภัยต่อสิ่งมีชีวิตก็เป็นได้

          สิ่งมีชีวิตแปลงพันธุ์เหล่านี้ต่างจากพันธุ์ธรรมดาตรงที่มียีนแปลกปลอมใหม่ ๆ (novel genes) เข้าไปอยู่ในพันธุ์นั้นทำให้มีความกลัวและคำถามตามมาหลายข้อ เช่น
          1. เสถียรภาพของยีนว่าจะอยู่คงทนในพันธุ์นั้นนานแค่ใด กี่ชั่วอายุหรือจะหายไปในชั่วลูกชั่วหลาน
          2. ยีนที่มาจากจุลินทรีย์ที่ไม่ก่อเกิดโรค มีโอกาสที่จะกลายพันธุ์เป็นยีนก่อเกิดโรคได้หรือไม่
          3. ยีนเหล่านี้มีโอกาสหลุดไปสู่พืชพันธุ์อื่น หรือจุจินทรีได้หรือไม่
          4. ผลผลิตจะมีพิษภัยต่อสุขภาพคน และสัตว์หรือไม่
          5. ปัญหาราคาผลิตผลทรัพย์สินทางปัญญา และอื่น ๆ ยังมีอีกมาก

ลกระทบต่อสังคมไทย
          ผลกระทบต่อเศรษฐกิจและสังคมของไทย และนานาชาติ ที่เกิดจากการผลิตและใช้ผลิตภัณฑ์ที่ผลิตโดยพันธุวิศวกรรม หรือที่เรียกว่า จีเอ็มโอ (GMOs) นั้น ในขณะนี้มีค่อนข้างสูง นับเป็นกระแสของผู้บริโภค และคนทั่วไปทั่วโลกที่มีความเป็นห่วงในเรื่องต่างๆ ดังต่อไปนี้
         1. เทคโนโลยีนี้ ค่อนข้างใหม่ มีการวิจัยและพัฒนาในบางประเทศเท่านั้น คนทั่วไปจึงไม่รู้ว่าผลิตภัณฑ์ที่เรียกว่า จีเอ็มโอ นั้นคืออะไร มีประโยชน์และอาจมีโทษอย่างไร
          2. เทคโนโลยีอยู่ในมือของบริษัทข้ามชาติใหญ่ๆ ทำให้ประชาชนมีความวิตกกังวลว่าจะ เป็นการผูกขาดตลาดหรือไม่ ราคาจะสูงเกินไปหรือไม่
          3. ผลิตผล จีเอ็มโอ มีความปลอดภัยต่อสุขภาพมนุษย์ และสัตว์ หรnอไม่เพียงใด แม้มีการทดสอบความปลอดภัยทางชีวภาพมามากในประเทศอื่น ยังมีคำถามอยู่ว่าแม้ปลอดภัยในตอนนี้ แต่ในอนาคต 10-20 ปี จะเป็นอะไรหรือไม่ ซึ่งนับว่าเป็นเรื่องยาก ที่จะหาคำตอบ
          4. มีผลกระทบต่อความหลากหลายทางชีวภาพหรือไม่ ซึ่งเรื่องนี้ คงขึ้นอยู่กับมุมมอง ที่ต่างกันของนักวิชาการ กลุ่มหนึ่งอาจมองไปว่า จะเป็นการนำไปสู่การปลูกพืชเชิงเดี่ยวมากขึ้น และแท้จริงแล้วอาจเป็นการสร้างความหลากหลายให้มากขึ้น จากการพัฒนาสิ่งมีชีวิต ที่มียีนใหม่ๆ ที่ไม่เคยมีตามธรรมชาติเลย ความจริงแล้วมนุษย์ได้ปรับเปลี่ยนพันธุ์พืช สัตว์ และจุลินทรี โดยวิธีผสมพันธุ์กันอยู่ แล้ว การใช้พันธุวิศวกรรมจึงเป็นเพียงเครื่องมืออย่างหนึ่งเท่านั้น


       เทคนิคพันธุวิศวกรรม 
                                            ( Genetic engineering )
     
           การปรับปรุงเปลี่ยนแปลงลักษณะทางพันธุกรรมโดยการนำยีน    หรือชิ้นดีเอ็นเอของสิ่งมีชีวิตสายพันธุ์หนึ่งไปถ่ายฝากในสิ่งมีชีวิตอีกสายพันธุ์หนึ่งเพื่อให้มีคุณสมบัติตามต้องการ     นักวิทยาศาสตร์เริ่มศึกษาวิจัยตั้งแต่คริสต์ศตวรรษที่  70และก้าวหน้าเพิ่มขึ้นเรื่อยมาจนกระทั่งในทศวรรษที่ผ่านมาได้มีการนำผลงานวิจัยไปทดสอบและเริ่มมีผลิตภัณฑ์ออกมาจำหน่ายในสหรัฐอเมริกา ตั้งแต่ปี พ.ศ. 2536 เทคนิคพันธุวิศวรรมเอื้อประโยชน์มหาศาลต่อวงการแพทย์ในการคิดค้นยาและวัคซีนป้องกันโรคตลอดจนการพัฒนาพันธุ์พืชเศรษฐกิจต่างๆ เช่น มะเขือเทศ ถั่วเหลือง ฝ้าย มันฝรั่ง ฯลฯ
                                   ข้อดีของพันธุวิศวกรรม
          ใช้เวลาน้อยกว่าวิธีการปรับปรุงพันธุ์ตามธรรมชาติหรือวิธีการดั้งเดิม   ผลิตผลที่ได้จะมีคุณสมบัติตรงตามความต้องการมากกว่า เนื่องจากใช้ยีนที่มีคุณสมบัติที่ต้องการโดยตรงไม่มีข้อจำกัดของแหล่งยีนที่ จะนำมาตัดต่ออาจเป็นยีนที่ได้มาจากการสังเคราะห์ขึ้นหรืออาจไม่เกี่ยวข้อง กับสายพันธุ์เดิมเลยก็ได้    
                                 วิธีการตัดต่อยีน
               วิธีการหลักที่ใช้ในขณะนี้คือการใช้จุลินทรีย์ที่  เรียกว่า  อะโกรแบคทีเรียม (Agrobacterium) เป็นพาหะนำยีนเข้าไป โดยเชื้อแบคทีเรียชนิดนี้จะสามารถเข้าสู่เซลล์พืชได้ ทางบาดแผลพืชบางชนิด  เช่น ต้นมะเขือเทศ  ต้นมันฝรั่ง ต้นยาสูบและต้นถั่ว   จากนั้นแบคทีเรียจะทำให้พืชเกิดการเจริญแบ่งเซลล์ที่ผิดปกติในบริเวณที่มี แบคทีเรียอยู่จนเซลล์พืชบวมขึ้นดูคล้ายก้อนเนื้อร้ายหรือมะเร็ง เรียกว่า คราวน์ กอลล์(Crown gall) ทำให้พืชเจริญผิดปรกติ อีกวิธีหนึ่งคือการใช้ปืนยิง (gene gun) ยิงยีนที่เกาะอยู่บนกระสุนซึ่งทำด้วยทองเข้าไปในยีนของสิ่งมีชีวิตที่เราต้องการ
                                                เทคนิดการดัดแปลงพันธุ์พืชโดยใช้ Agrobacterium
         นำยีนจากพืชที่มีลักษณะต้านทานโรค แล้วแยกพลาสมิด (DNA vector) ออกมาจาก Agrobacterium และตัดส่วนหนึ่งของพลาสมิดออกไปเชื่อมต่อยีนเข้ากับพลาสมิดได้ Agrobacterium ที่ต้านทานโรคใส่เข้าไปในเซลล์พืชเพาะเลี้ยงได้พืชที่มีความต้านทานโรค
 
   

วันศุกร์ที่ 19 สิงหาคม พ.ศ. 2554

การแบ่งเซลล์แบบไมโอซิส ( meiosis)
การแบ่งเซลล์แบบไมโอซิส ( meiosis)
การแบ่งเซลล์แบบไมโอซิส เป็นการแบ่งเซลล์เพื่อสร้างเซลล์สืบพันธุ์ของสัตว์ ซึ่งเกิดในวัยเจริญพันธุ์ ของสิ่งมีชีวิต โดยพบในอัณฑะ ( testes), รังไข่ ( ovary), และเป็นการแบ่ง เพื่อสร้างสปอร์ ( spore) ในพืช ซึ่งพบในอับละอองเรณู ( pollen sac) และอับสปอร์ ( sporangium) หรือโคน ( cone) หรือในออวุล ( ovule)
มีการลดจำนวนชุดโครโมโซมจาก 2n เป็น n ซึ่งเป็นกลไกหนึ่ง ที่ช่วยให้จำนวนชุดโครโมโซมคงที่ ในแต่ละสปีชีส์ ไม่ว่าจะเป็นโครโมโซม ในรุ่นพ่อ - แม่ หรือรุ่นลูก - หลานก็ตาม
มี 2 ขั้นตอน คือ
1. ไมโอซิส I (Meiosis - I)
ไมโอซิส I (Meiosis - I) หรือ Reductional division ขั้นตอนนี้จะมีการแยก homologous chromosome ออกจากกันมี 5 ระยะย่อย คือ
•  Interphase- I
•  Prophase - I
•  Metaphase - I
•  Anaphase - I
•  Telophase - I
2. ไมโอซิส II (Meiosis - II)
ไมโอซิส II (Meiosis - II) หรือ Equational division ขั้นตอนนี้จะมีการแยกโครมาทิด ออกจากกันมี 4 - 5 ระยะย่อย คือ
•  Interphase - II
•  Prophase - II
•  Metaphase - II
•  Anaphase - II
•  Telophase - II
เมื่อสิ้นสุดการแบ่งจะได้ 4 เซลล์ที่มีโครโมโซมเซลล์ละ n (Haploid) ซึ่งเป็นครึ่งหนึ่งของเซลล์ตั้งต้น และเซลล์ที่ได้เป็นผลลัพธ์ ไม่จำเป็นต้องมีขนาดเท่ากัน
ขั้นตอนต่างๆในไมโอซิส
Meiosis - I มีขั้นตอนต่างๆ ดังนี้
Interphase- I
•  มีการสังเคราะห์ DNA อีก 1 เท่าตัว หรือมีการจำลองโครโมโซม อีก 1 ชุด และยังติดกันอยู่ ที่ปมเซนโทรเมียร์ ดังนั้น โครโมโซม 1 ท่อน จึงมี 2 โครมาทิด
Prophase - I
•  เป็นระยะที่ใช้เวลานานที่สุด
•  มีความสำคัญ ต่อการเกิดวิวัฒนาการ ของสิ่งมีชีวิตมากที่สุด เนื่องจากมีการแปลผัน ของยีนส์เกิดขึ้น
•  โครโมโซมที่เป็นคู่กัน ( Homologous Chromosome) จะมาเข้าคู่ และแนบชิดติดกัน เรียกว่า เกิดไซแนปซิส ( Synapsis) ซึ่งคู่ของโฮโมโลกัส โครโมโซม ที่เกิดไซแนปซิสกันอยู่นั้น เรียกว่า ไบแวเลนท์ ( bivalent) ซึ่งแต่ละไบแวเลนท์มี 4 โครมาทิดเรียกว่า เทแทรด ( tetrad) ในคน มีโครโมโซม 23 คู่ จึงมี 23 ไบแวเลนท์
•  โฮโมโลกัส โครโมโซม ที่ไซแนปซิสกัน จะผละออกจากกัน บริเวณกลางๆ แต่ตอนปลาย ยังไขว้กันอยู่ เรียกว่า เกิดไคแอสมา ( chiasma)
•  มีการเปลี่ยนแปลงชิ้นส่วนโครมาทิด ระหว่างโครโมโซมที่เป็นโฮโมโลกัสกัน กับบริเวณที่เกิดไคแอสมา เรียกว่า ครอสซิ่งโอเวอร์ ( crossing over) หรืออาจมีการเปลี่ยนแปลง ชิ้นส่วนของโครมาทิด ระหว่างโครโมโซม ที่ไม่เป็นโฮโมโลกัสกัน ( nonhomhlogous chromosome) เรียกว่าทรานส-โลเคชัน (translocation) กรณีทั้งสอง ทำให้เกิดการผันแปรของยีน ( geng variation) ซึ่งทำให้เกิดการแปรผัน ของลักษณะสิ่งมีชีวิต ( variation)
Metaphase - I
ไบแวเลนท์จะมาเรียงตัวกัน อยู่ในแนวกึ่งกลางเซลล์ (โฮโมโลกัส โครโมโซม ยังอยู่กันเป็นคู่ๆ)
Anaphase - I
•  ไมโทติก สปินเดิล จะหดตัวดึงให้ โฮโมโลกัส โครโมโซม ผละแยกออกจากกัน
•  จำนวนชุดโครโมโซมในเซลล์ ระยะนี้ยังคงเป็น 2n เหมือนเดิม ( 2n เป็น 2n)
Telophase - I
•  โครโมโซมจะไปรวมอยู่ แต่ละขั้วของเซลล์ และในเซลล์บางชนิด ในระยะนี้ จะมีการสร้างเยื่อหุ้มนิวเคลียส มาล้อมรอบโครโมโซม และแบ่งไซโทพลาสซึม ออกเป็น 2 เซลล์ เซลล์ละ n แต่ในเซลล์บางชนิด จะไม่แบ่งไซโทพลาสซึม โดยจะมีการเปลี่ยนแปลง ของโครโมโซม เข้าสู่ระยะโพรเฟส II เลย
Meiosis - II มีเหตุการณ์ณ์ต่างๆ ต่อไปนี้เกิดขึ้น
Interphase - II
•  เป็นระยะพักตัว ซึ่งมีหรือไม่ก็ได้ ขึ้นอยู่กับชนิดของเซลล์
•  ไม่มีการสังเคราะห์ DNA หรือจำลองโครโมโซมแต่อย่างใด
Prophase - II
•  โครมาทิดจะหดสั้นมากขึ้น
•  ไม่มีการเกิดไซแนปซิส , ไคแอสมา , ครอสซิ่งโอเวอร์ แต่อย่างใด
Metaphase - II
•  โครมาทิดมาเรียงตัว อยู่ในแนวกึ่งกลางเซลล์
Anaphase - II
•  มีการแยกโครมาทิดออกจากกัน ทำให้จำนวนชุดโครโมโซมเพิ่มจาก n
•  เป็น 2n ชั่วขณะ
Telophase - II
•  มีการแบ่งไซโทพลาสซึม จนได้เซลล์ใหม่ 4 เซลล์ ซึ่งแต่ละเซลล์ มีโครโมโซม เป็น n
•  ใน 4 เซลล์ที่เกิดขึ้นนั้น จะมียีนเหมือนกันอย่างละ 2 เซลล์ ถ้าไม่เกิดครอสซิ่งโอเวอร์ หรืออาจจะมียีนต่างกันทั้ง 4 เซลล์ ถ้าเกิดครอสซิ่งโอเวอร์ หรืออาจมียีนต่างกันทั้ง 4 เซลล์ถ้าเกิดครอสซิ่งโอเวอร์

ระยะ
การเปลี่ยนแปลงสำคัญ
อินเตอร์เฟส I
จำลองโครโมโซมขึ้นมาอีก 1 เท่าตัว แต่ละโครโมโซม ประกอบด้วย 2 โครมาทิด
โปรเฟส I
โฮโมโลกัส โครโมโซม มาจับคู่แนบชิดกัน ( synapsis) ทำให้มีกลุ่มโครโมโซม กลุ่มละ 2 ท่อน ( bivalent) แต่ละกลุ่ม ประกอบด้วย 4 โครมาทิด( tetrad) และเกิดการแลกเปลี่ยน ชิ้นส่วนของโครมาทิด ( crossing over)
เมตาเฟส I
คู่ของโฮโมโลกัส โครโมโซม เรียงตัวอยู่ตามแนวศูนย์ กลางของเซลล์
แอนาเฟส I
โฮโมโลกัส โครโมโซม แยกคู่ออกจากกัน ไปยังแต่ละข้างของขั้วเซลล์
ทีโลเฟส I
เกิดนิวเคลียสใหม่ 2 นิวเคลียส แต่ละนิวเคลียส มีจำนวนโครโมโซม เป็นแฮพลอยด์ ( n)
อินเตอร์เฟส II
เป็นระยะพักชั่วครู่ แต่ไม่มีการจำลอง โครโมโซมขึ้นมาอีก
โปรเฟส II
โครโมโซมหดสั้นมาก ทำให้เห็นแต่ละโครโมโซม มี 2 โครมาทิด
เมตาเฟส II
โครโมโซมจะมาเรียงตัว อยู่แนวศูนย์กลางของเซลล์
แอนาเฟส II
เกิดการแยกของโครมาทิด ที่อยู่ในโครโมโซมเดียวกัน ไปยังขั้วแต่ละข้างของเซลล์ ทำให้โครโมโซม เพิ่มจาก n เป็น 2n
ทีโลเฟส II
เกิดนิวเคลียสใหม่เป็น 4 นิวเคลียส และแบ่งไซโทพลาสซึม เกิดเป็น 4 เซลล์ สมบูรณ์ แต่ละเซลล์ มีจำนวนโครโมโซม เป็นแฮพลอยด์ ( n) หรือ เท่ากับครึ่งหนึ่ง ของเซลล์เริ่มต้น
 
การแบ่งเซลล์แบบไมโทซิส ( mitosis)
การแบ่งเซลล์แบบไมโทซิส เป็นการแบ่งเซลล์ เพื่อเพิ่มจำนวนเซลล์ของร่างกาย ในการเจริญเติบโต ในสิ่งมีชีวิตหลายเซลล์ หรือในการแบ่งเซลล์ เพื่อการสืบพันธุ์ ในสิ่งมีชีวิตเซลล์เดียว และหลายเซลล์บางชนิด เช่น พืช
•  ไม่มีการลดจำนวนชุดโครโมโซม ( 2n ไป 2n หรือ n ไป n )
•  เมื่อสิ้นสุดการแบ่งเซลล์จะได้ 2 เซลล์ใหม่ที่มีโครโมโซมเท่าๆ กัน และเท่ากับเซลล์ตั้งต้น
•  พบที่เนื้อเยื่อเจริญปลายยอด , ปลายราก , แคมเบียม ของพืชหรือเนื้อเยื่อบุผิว , ไขกระดูกในสัตว์ , การสร้างสเปิร์ม และไข่ของพืช
•  มี 5 ระยะ คือ อินเตอร์เฟส ( interphase), โพรเฟส ( prophase), เมทาเฟส (metaphase), แอนาเฟส ( anaphase) และเทโลเฟส ( telophase)
วัฏจักรของเซลล์ ( cell cycle)
วัฏจักรของเซลล์ หมายถึง ช่วงระยะเวลาการเปลี่ยนแปลงของเซลล์ ในขณะที่เซลล์มีการแบ่งตัว ซึ่งประกอบด้วย 2 ระยะได้แก่ การเตรียมตัวให้พร้อม ที่จะแบ่งตัว และกระบวนการแบ่งเซลล์
1. ระยะอินเตอร์เฟส ( Interphase)
ระยะนี้เป็นระยะเตรียมตัว ที่จะแบ่งเซลล์ในวัฏจักรของเซลล์ แบ่งออกเป็น 3 ระยะย่อย คือ
•  ระยะ G1 เป็นระยะก่อนการสร้าง DNA ซึ่งเซลล์มีการเจริญเติบโตเต็มที่ ระยะนี้ จะมีการสร้างสารบางอย่าง เพื่อใช้สร้าง DNA ในระยะต่อไป
•  ระยะ S เป็นระยะสร้าง DNA (DNA replication) โดยเซลล์มีการเจริญเติบโต และมีการสังเคราะห์ DNA อีก 1 ตัว หรือมีการจำลองโครโมโซม อีก 1 เท่าตัว แต่โครโมโซมที่จำลองขึ้น ยังติดกับท่อนเก่า ที่ปมเซนโทรเมียร์ ( centromere) หรือไคเนโตคอร์ ( kinetochore) ระยะนี้ใช้เวลานานที่สุด
•  ระยะ G2 เป็นระยะหลังสร้าง DNA ซึ่งเซลล์มีการเจริญเติบโต และเตรียมพร้อม ที่จะแบ่งโครโมโซม และไซโทพลาสซึมต่อไป
2. ระยะ M (M-phase)
ระยะ M (M-phase) เป็นระยะที่มีการแบ่งนิวเคลียส และแบ่งไซโทพลาสซึม ซึ่งโครโมโซม จะมีการเปลี่ยนแปลงหลายขั้นตอน ก่อนที่จะถูกแบ่งแยกออกจากกัน ประกอบด้วย 4 ระยะย่อย คือ โพรเฟส เมทาเฟส แอนาเฟส และเทโลเฟส
ในเซลล์บางชนิด เช่น เซลล์เนื้อเยื่อเจริญของพืช เซลล์ไขกระดูก เพื่อสร้างเม็ดเลือดแดง เซลล์บุผิว พบว่า เซลล์จะมีการแบ่งตัว อยู่เกือบตลอดเวลา จึงกล่าวได้ว่า เซลล์เหล่านี้ อยู่ในวัฏจักรของเซลล์ตลอด แต่เซลล์บางชนิด เมื่อแบ่งเซลล์แล้ว จะไม่แบ่งตัวอีกต่อไป นั่นคือ เซลล์จะไม่เข้าสู่วัฏจักรของเซลล์อีก เข้าสู่ G0 จนกระทั่งเซลล์ชราภาพ ( cell aging) และตายไป ( cell death) ในที่สุด แต่เซลล์บางชนิด จะพักตัวหรืออยู่ใน G0 ชั่วระยะเวลาหนึ่ง ถ้าจะกลับมาแบ่งตัวอีก ก็จะเข้าวัฏจักรของเซลล์ต่อไป
ขั้นตอนต่างๆของโมโทซิส
1. ระยะอินเตอร์เฟส ( interphase)
•  เป็นระยะที่เซลล์เติบโตเติมที่
•  เซลล์มีการเปลี่ยนแปลง ทางเคมีมากที่สุด หรือมีเมทาบอลิซึมสูงมาก จึงเรียก Metabolic stage
•  ใช้เวลานานที่สุด ดังนั้น ถ้าศึกษาการแบ่งเซลล์แบบไมโทซิส จากกล้องจุลทรรศน์ จะพบเซลล์ปรากฏ อยู่ในระยะนี้มากที่สุด
•  โครโมโซม มีลักษณะเป็นเส้นใยยาวขดไปมา เรียกว่า เส้นใยโครมาทิน ( chromation)
•  มีการสังเคราะห์ DNA ขึ้นมาอีก 1 เท่าตัว หรือมีการจำลองโครโมโซมอีก 1 ชุด แต่ยังติดกันอยู่ ที่ปมเซนโทรเมียร์ ( centromere) หรือไคเนโตคอร์ ( kinetochore) ดังนั้นโครโมโซม 1 แท่ง จะมี 2 ขา เรียกแต่ละขานั้น เรียกว่า โครมาทิด ( chromatid) โดยโครมาทิดทั้งสองขา ของโครโมโซมท่อนเดียวกัน เรียกว่า sister chromatid ดังนั้น ถ้าโครโมโซมในเซลล์ 8 แท่งก็จะมี 16 โครมาทิด หรือในคนเรา มีโครโมโซม 46 แท่ง ก็จะมี 92 โครมาทิด
•  ระยะนี้ โครโมโซมจะมีความยาวมากที่สุด
2. ระยะโฟรเฟส ( prophase)
•  ระยะนี้โครมาทิดจะหดตัว โดยการบิดเป็นเกลียวสั้นลง ทำให้เห็นได้ชัดเจนมากขึ้นว่า โครโมโซม 1 แท่งมี 2 โครมาทิด
•  เยื่อหุ้มนิวเคลียส และนิวคลีโอลัสสลายไป
•  เซนทริโอล ( centrioles) ในเซลล์สัตว์ และโพรติสท์บางชนิด เช่น สาหร่าย รา จะเคลื่อนที่ แยกไปอยู่ตรงข้ามกัน ในแต่ละขั้วเซลล์ และสร้างเส้นใยโปรตีน (microtubule) เรียกว่า ไมโทติก สปินเดิล ( mitotic spindle) และสปินเดิล ไฟเบอร์ (spindle fiber) ไปเกาะที่เซนโทรเมียร์ ของทุกโครมาทิก ดังนั้น รอบๆ เซนโทรโอล จึงมีไมโทติก สปินเดิล ยื่นออกมาโดยรอบมากมาย เรียกว่า แอสเทอร์ ( Aster) สำหรับใช้ในเซลล์พืช ไม่มีเซนทริโอล แต่มีไมโทติก สปินเดิล การกระจายออก จากขั้วที่อยู่ตรงข้ามกัน ( polar cap)
ข้อควรทราบพิเศษ ระยะโฟรเฟสนี้ พบว่า ในเซลล์สัตว์ จะมีเซนทริโอล 2 อัน หรือมีแอสเทอร์ 2 อัน
3. ระยะเมทาเฟส ( metaphase)
•  ระยะนี้ไมโทติก สปินเดิลจะหดตัว ดึงให้โครมาทิดไปเรียงตัวอยู่ในแนวกึ่งกลางเซลล์ ( equatorial plate)
•  โครมาทิดหดสั้นมากที่สุด จึงสะดวกต่อการเคลื่อนที่ ของโครมาทิดมาก
•  ระยะนี้เหมาะมากที่สุด ต่อการนับจำนวนโครโมโซม , จัดเรียงโครโมโซมเป็นคู่ๆ หรือที่เรียกว่าแครีโอไทป์ ( karyotype) หรือเหมาะต่อการศึกษารูปร่าง ความผิดปกติ ของโครโมโซม
•  ตอนปลายของระยะนี้ มีการแบ่งตัว ของเซนโทรเมียร์ ทำให้โครมาทิดพร้อมที่จะแยกจากกัน
4. ระยะแอนาเฟส ( anaphase)
•  ระยะนี้ไมโทติก สปินเดิล หดสั้นเข้า ดึงให้โครมาทิดแยกตัวออกจากกัน แล้วโครมาทิด จะค่อยๆ เคลื่อนไปยังแต่ละขั้ว ของเซลล์
•  โครโมโซม ในระยะนี้จะเพิ่มจาก 2n เป็น 4n
•  เป็นระยะเวลาที่ใช้สั้นที่สุด
•  ระยะนี้จะเห็นโครโมโซม มีรูปร่างคล้ายอักษรต ตัววี ( V), ตัวเจ ( J) และตัวไอ ( I) ขึ้นอยู่กับตำแหน่งของเซนโทรเมียร์ ว่าอยู่กึ่งกลางของโครโมโซม หรือค่อนข้างปลาย หรือเกือบปลายสุด
5. ระยะเทโลเฟส ( telophase)
•  เป็นระยะสุดท้ายของการแบ่งเซลล์ โดยโครมาทิดที่แยกออกจากกัน จะเรียกเป็น โครโมโซมลูก ( daughter chromosome) ซึ่งจะไปรวมกลุ่มในแต่ละขั้วของเซลล์
•  มีการสร้างเยื่อหุ้มนิวเคลียส ล้อมรอบโครโมโซม และนิวคลีโอลัสปรากฏขึ้น
•  ไมโทติก สปินเดิล สลายไป
•  มีการแบ่งไซโทพลาสซึมออกเป็น 2 ส่วน คือ 1. ในเซลล์สัตว์ จะเกิดโดย เยื่อหุ้มเซลล์จะคอดกิ่วจาก 2 ข้าง เข้าใจกลางเซลล์ จนเกิดเป็นเซลล์ 2 เซลล์ใหม 2. ในเซลล์พืช จะเกิดโดย กอลจิคอมเพลกซ์สร้างเซลลูโลส มาก่อตัวเป็นเซลล์เพลท ( cell plate) หรือแผ่นกั้นเซลล์ ตรงกลางเซลล์ ขยายไป 2 ข้างของเซลล์ ซึ่งต่อมาเซลล์เพลท จะกลายเป็นส่วนของผนังเซลล์
•  ผลสุดท้าย จะได้เซลล์ใหม่ 2 เซลล์ ที่มีขนาดเท่ากันเสมอ โดยนิวเคลียสของเซลล์ใหม่ มีองค์ประกอบ และสมบัติเหมือนกัน และมีสภาพเหมือนกับนิวเคลียส ในระยะอินเตอร์เฟส ของเซลล์เริ่มต้น

 

ระยะการแบ่ง
การเปลี่ยนแปลงที่สำคัญ
อินเตอร์เฟส (Interphase)
  • เพิ่มจำนวนโครโมโซม ( Duplication) ขึ้นมาอีกชุดหนึ่ง และติดกันอยู่ที่เซนโทรเมียร์ ( 1 โครโมโซม มี 2 โครมาทิด)
  • มีการเปลี่ยนแปลงทางเคมีมากที่สุด ( metabolic stage)
  • เซนตริโอ แบ่งเป็น 2 อัน
  • ใช้เวลานานที่สุด , โครโมโซมมีความยาวมากที่สุด
โพรเฟส ( Prophase)
  • โครมาทิดหดสั้น ทำให้มองเห็นเป็นแท่งชัดเจน
  • เยื่อหุ้มนิวเคลียสและนิวคลีโอลัสหายไป
  • เซนตริโอลเคลื่อนไป 2 ข้างของเซลล์ และสร้างไมโทติก
  • สปินเดิลไปเกาะที่เซนโทรเมียร์ ระยะนี้จึงมีเซนตริโอล 2 อัน
เมตาเฟส ( Metaphase)
  • โครโมโซมเรียงตัวตามแนวกึ่งกลางของเซลล์
  • เหมาะต่อการนับโครโมโซม และศึกษารูปร่างโครงสร้างของโครโมโซม
  • เซนโทรเมียร์จะแบ่งครึ่ง ทำให้โครมาทิดเริ่มแยกจากกัน
  • โครโมโซมหดสั้นมากที่สุด สะดวกต่อการเคลื่อนที่


ข้อเปรียบเทียบการแบ่งเซลล์ระหว่าง ไมโทซิสและไมโอซิส
ไมโทซิส
1.    โดยทั่วไป เป็นการแบ่งเซลล์ของร่างกาย เพื่อเพิ่มจำนวนเซลล์ เพื่อการเจริญเติบโต  หรือการ
สืบพันธุ์ ในสิ่งมีชีวิตเซลล์เดียว
2.    เริ่มจาก 1 เซลล ์แบ่งครั้งเดียวได้เป็น 2 เซลล์ใหม่
3.   เซลล์ใหม่ที่เกิดขึ้น 2 เซลล์ สามารถแบ่งตัวแบบไมโทซิสได้อีก
4.   การแบ่งแบบไมโทซิส จะเริ่มเกิดขึ้นตั้งแต่ ระยะไซโกต และสืบเนื่องกันไปตลอดชีวิต
5.   จำนวนโครโมโซม หลังการแบ่งจะเท่าเดิม (2n) เพราะไม่มีการแยกคู่ ของโฮโมโลกัสโครโมโซม
6.   ไม่มีไซแนปซิส ไม่มีไคแอสมา และไม่มี ครอสซิงโอเวอร์
7.   ลักษณะของสารพันธุ์กรรม (DNA) และโครโมโซมในเซลล์ใหม่ ทั้งสองจะเหมือนกันทุกประการ

ไมโอซิส
1. โดยทั่วไป เกิดกับเซลล์ ที่จะทำหน้าที่ ให้กำเนิดเซลล์สืบพันธุ์ จึงเป็นการแบ่งเซลล์ เพื่อสร้างเซลล์สืบพันธุ์

2. เริ่มจาก 1 เซลล์ แบ่ง 2 ครั้ง ได้เป็น 4 เซลล์ใหม
3. เซลล์ใหม่ที่เกิดขึ้น 4 เซลล์ ไม่สามารถแบ่งตัวแบบ  ไมโอซิสได้อีก แต่อาจแบ่งตัวแบบไมโทซิสได้
4. ส่วนใหญ่จะแบ่งไมโอซิส เมื่ออวัยวะสืบพันธุ์เจริญเต็มที่แล้ว หรือเกิดในไซโกต ของสาหร่าย และ ราบางชนิด
5. จำนวน โครโมโซม จะลดลงครึ่งหนึ่งในระยะไมโอซิส เนื่องจากการแยกคู่ ของโฮโมโลกัสโครโมโซม ทำให้เซลล์ใหม่มีจำนวนโครโมโซมครึ่งหนึ่ง ของเซลล์เดิม (n)